University-Affiliated Business Applies for Patent for Solar-Cell Efficiency Technology

Douglas Hutchings (left), chief executive officer of Silicon Solar Solutions Inc., and Matthew Young, a member of Picasolar, a graduate business plan competition team at the University of Arkansas, pose in a GREEN Center Laboratory at the Arkansas Research and Technology Park. Photo by Russell Cothren, University of Arkansas
Photo Submitted

Douglas Hutchings (left), chief executive officer of Silicon Solar Solutions Inc., and Matthew Young, a member of Picasolar, a graduate business plan competition team at the University of Arkansas, pose in a GREEN Center Laboratory at the Arkansas Research and Technology Park. Photo by Russell Cothren, University of Arkansas

FAYETTEVILLE, Ark. – Silicon Solar Solutions Inc., a Genesis Technology Incubator client at the University of Arkansas, has developed a new technology that could improve the efficiency of solar cells by 15 percent, thereby potentially saving manufacturers millions of dollars in production costs.

The start-up company at the Arkansas Research and Technology Park has submitted an application for a full patent on a self-aligned hydrogenated selective emitter for N-type solar cells, moving the patent from “provisional” to “pending,” said Douglas Hutchings, chief executive officer of Silicon Solar Solutions.

“If successful, this approach represents the single largest technology leap in solar since 1974,” Hutchings said. “We have demonstrated it on lab-scale cells already. We’re all excited.”

Seth Shumate, a graduate student at the U of A and senior scientist at Silicon Solar Solutions, invented the emitter. In December, the National Science Foundation awarded the company a $150,000 small-business grant to continue its development.

The technology is at the heart of a joint venture being developed by Silicon Solar Solutions and Picasolar, a graduate business competition team at the university that includes Shumate as a member. On Jan. 26, Picasolar took first place at the 2013 IBK Capital-Ivey Business Plan Competition and took home a cash award of $20,000.

Shumate, a doctoral student in the microelectronics-photonics program at the university, uses a vacuum chamber in a laboratory at the Arkansas Research and Technology Park to conduct his experiments. The chamber has a tungsten filament, similar to a light bulb, which heats to 3,452 degrees Fahrenheit. When hydrogen is introduced to the chamber it hits the surface of a tungsten filament, separating the hydrogen atoms.

“Those atoms then go into the solar cell and do their magic,” Shumate said.

Selective emitter technology for solar cells has so far involved complex processes with at least two or more steps. The technology innovation put forward by Silicon Solar Solutions is a single-step method for creating a selective emitter by using atomic hydrogen to deactivate impurities in the emitter. It increases solar power conversion efficiency and reduces the amount of silver needed to produce high-efficiency solar cells, thereby lowering material costs.

The National Science Foundation Phase I grant came through the Small Business Innovation Research Program, which allows federal agencies to stimulate technological innovation in the private sector by strengthening small businesses that meet federal research and development needs. The program also is intended to increase the commercial application of federally supported research results.

Silicon Solar Solutions will raise $60,000 of outside investment for the emitter to secure an additional $30,000 from the National Science Foundation. Hutchings said it hopes to receive a $750,000 Phase II grant in January 2014 to demonstrate the lab results on industrial-quality cells and start implementing the technology in existing solar-cell manufacturing lines.

Contacts

Douglas Hutchings, chief executive officer
Silicon Solar Solutions Inc.
501-339-1110, doug@siliconsolarsolutions.com

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Affairs of the Heart

Find out how biomedical engineering professor Morten Jensen is developing innovative devices to produce better outcomes in cardiovascular medicine.

Students, Faculty and Alumni Kick Off Centennial Year of School of Law

Founded April 14, 1924, the School of Law faculty, students and alumni started the celebration of its centennial year with a Founders Day event and will continue with more commemorative events this coming fall.

Yearly Academic Award Winners, Ambassadors Recognized by Bumpers College

Schyler Angell, Lexi Dilbeck, Cason Frisby, Tanner Austin King, Anna Brooke Mathis, Carrie Ortel, Lucy Scholma, Kadence Trosper and student ambassadors were honored at the college's annual reception.

World Premiere of 'Cries from the Cotton Field' Slated for May 8

Cries from the Cotton Field chronicles the journey of 19th century Italian immigrants from northern Italy to the Arkansas Delta and ultimately to Tontitown. It will premier at 6 p.m. May 8 in Springdale Har-Ber High School.

Fay Jones School's Earth Day Event Spotlights Sustainable Materials and Projects

"One day doesn't seem like a lot, but one day can empower individuals and groups, energize them to work for change and innovate for transformative solutions," professor Jennifer Webb said of the students' design work.

News Daily