Silicon Micro-islands and Nano-spikes Channel Water on Glass Slides

FAYETTEVILLE, Ark. – Working at the nanoscale level, University of Arkansas engineering researchers have created stable superhydrophilic surfaces on a glass substrate. The surfaces, made of randomly placed and densely distributed micron-sized silicon islands with nano-sized spikes, allow water to quickly penetrate textures and spread over the surface.

The research will aid in the development of commercial products with superior self-cleaning and anti-fogging properties and could lead to the design of microfluidic chips with a network of tracks or channels to better control the flow of liquid.

Discovered in the mid-1990s, superhydrophilicity is the physical condition of a material such that when water is applied to the material, the water forms no contact angle and thus prevents beading. 

“Superhydrophilic surfaces exhibit self-cleaning properties because the surface has a higher affinity to water than to oils and other contaminants,” said Min Zou, associate professor of mechanical engineering and author of the study published in the Nanotechnology. “The surfaces also exhibit anti-fogging properties because a thin, uniform film of water that does not scatter light forms on the surface.”

Zou and three students tested the wettability of glass substrates by texturing the slides through a process known as aluminum-induced crystallization of amorphous silicon.

“Aluminum-induced crystallization of amorphous silicon has been studied extensively to produce films for electronic and photovoltaic applications,” Zou said, “but it has never been investigated for increasing the wettability of solid substrates.”

The researchers deposited 100 nanometers of amorphous silicon on the glass slides and then a layer of aluminum on top of the amorphous silicon. They annealed the sample at 650 degrees Celsius for 10 minutes and then removed the residual aluminum through selective wet etching. The annealing – a process of heating and cooling – created the irregularly shaped micro-islands with nano-scale spikes.

“When a water droplet reached the silicon textures, particularly the nano-sized spikes, it quickly penetrated the textures and suffused the surface,” Zou said. “The stability of the islands and spikes ensured the stability of the superhydrophilicity.”

The researchers also discovered that the textured surface becomes superhydrophobic when treated with octafluorocyclobutane, a compound of carbon and fluorine used in the production and processing of semiconductor materials and devices. Hydrophobic describes the physical property of a molecule repelled from water. Superhydrophobicity refers to material surfaces that have a water contact angle greater than 150 degrees. In other words, they are materials with surfaces that are extremely difficult to wet. 

An electronic copy of researchers’ article is available upon request.

Contacts

Min Zou, associate professor, mechanical engineering
College of Engineering
479-575-6671, mzou@uark.edu
 
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Headlines

PetSmart CEO J.K. Symancyk to Speak at Walton College Commencement

J.K. Symancyk is an alumnus of the Sam M. Walton College of Business and serves on the Dean’s Executive Advisory Board.

Faulkner Center, Arkansas PBS Partner to Screen Documentary 'Gospel'

The Faulkner Performing Arts Center will host a screening of Gospel, a documentary exploring the origin of Black spirituality through sermon and song, in partnership with Arkansas PBS at 7:30 p.m. Thursday, May 2.

UAPD Officers Mills and Edwards Honored With New Roles

Veterans of the U of A Police Department, Matt Mills has been promoted to assistant chief, and Crandall Edwards has been promoted to administrative captain.

Community Design Center's Greenway Urbanism Project Wins LIV Hospitality Design Award

"Greenway Urbanism" is one of six urban strategies proposed under the Framework Plan for Cherokee Village, a project that received funding through an Our Town grant from the National Endowment for the Arts.

Spring Bike Drive Refurbishes Old Bikes for New Students

All donated bikes will be given to Pedal It Forward, a local nonprofit that will refurbish your bike and return it to the U of A campus to be gifted to a student in need. Hundreds of students have already benefited.

News Daily