Special Nanotubes May Be Used as a Vehicle for Treating Neurodegenerative Disorders

FAYETTEVILLE, Ark. – Electrical engineering researchers at the University of Arkansas have demonstrated that magnetic nanotubes combined with nerve growth factor can enable specific cells to differentiate into neurons. The results from in vitro studies show that magnetic nanotubes may be exploited to treat neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease because they can be used as a delivery vehicle for nerve growth factor.

PC12 cell culture with nerve growth factor-incorporated magnetic nanotubes: Micrograph image of a typical PC12 cell with cell body and neurites. The inset is a magnified image of the growth cone area.

“Due to their structure and properties, magnetic nanotubes are among the most promising candidates of multifunctional nanomaterials for clinical diagnostic and therapeutic applications,” said Jining Xie, research assistant professor and lead author of the study. “We’re excited about these results specifically and the overall promise of functionalized nanotubes to treat patients with these debilitating conditions.”

Xie, Linfeng Chen, senior research associate in the Center for Wireless Nano-, Bio- and Info-Tech Sensors and Systems, and researchers from Arkansas State University worked with rat pheochromocytoma, otherwise known as PC12 cells. PC12 cells were chosen because they require nerve growth factor – a small, secreted protein that helps nerve cells survive – to differentiate into neurons.

The researchers knew that any sign of nerve growth would indicate interactions between the PC12 cells and the nanotubes. They observed neurite growth, specifically filopodia – slender projections that extend from the leading edge of migrating cells – extruding from neurite growth cones toward the nanotubes incorporated with nerve growth factor.

Image showing growth cone sending filopodia toward magnetic nanotubes and making contact with them.

“Microscopic observations showed filopodia extending from the growth cones were in close proximity to the nanotubes, at time appearing to reach out toward or into them,” Xie said.

The results did not show any abnormal toxicity from the nanotubes.

The human nervous system depends upon a complex network of neurons, or nerve cells, tied to each other by synapses. The synaptic connections occur through neurites, which are immature or developing neurons. When these connections fail, the nervous system does not function properly, eventually leading to injury or disease. As Xie mentioned, the researchers hope that functionalized nanotubes can help restore or repair damaged nerve cells.

Xie collaborates with Vijay Varadan, distinguished professor of electrical engineering and director of the Center for Wireless Nano-, Bio- and Info-Tech Sensors and Systems, which is supported by the National Science Foundation’s Experimental Program to Stimulate Competitive Research. Another collaborator was Malathi Srivatsan, associate professor of biology at Arkansas State University in Jonesboro, Ark.

Varadan holds the College of Engineering’s Twenty-First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college’s Chair in Microelectronics and High Density Electronics. In addition to his position as director of the above center, he directs the university’s High Density Electronics Center. Varadan is also a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences in Little Rock, Ark.

The researchers’ findings were published in Nanotechnology, an Institute of Physics Publishing journal. An online version of the article is available at http://www.iop.org/EJ/abstract/-search=60067076.1/0957-4484/19/10/105101.

Contacts
Jining Xie, research assistant professor, electrical engineering
College of Engineering
479-575-8607, jxie@uark.edu
 
Vijay Varadan, distinguished professor, electrical engineering
College of Engineering
479-575-2873, vjvesm@uark.edu

Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Headlines

Four Students Named Goldwater Scholars; Two Earn Udall Honorable Mentions

Four U of A students have received the prestigious Goldwater Scholarship, an award for top students in mathematics, science, and engineering.

Cross-Campus Collaboration Culminates in New Outdoor Geological Installation

Grand opening event to celebrate the new GeoLab installation at the U of A’s Gearhart Hall courtyard is set for May 3. The installation will be open to the public year-round.

First Students to Use Online Degree to Hone Nursing Leadership, Elevate Patient Care

Hanna Baxendale and Wendi Kimbrell will begin coursework in the Doctor of Nursing Practice-Executive Master of Business Administration program offered by the Eleanor Mann School of Nursing and Walton College.

Join the Office for Sustainability on a Final Cruise to Campus

Cruise to Campus Wednesdays have fostered a gathering space for individuals interested in biking to campus. Drop by the Old Main Lawn from 7:30-10 a.m. Wednesday for coffee, something to eat and conversation.

Fay Jones School Student Ambassador Program Gives Voice to Design Students

The student ambassador program at the Fay Jones School of Architecture and Design is built to connect top design students with their school, its alumni, its future students and others inside and outside the school.

News Daily