UNIVERSITY OF ARKANSAS PHYSICISTS DEVELOP LASER PROBE FOR MULTI-PARAMETER MEASUREMENTS IN COMBUSTION

FAYETTEVILLE, Ark. - Fire shaped the history of humans and today it fuels power plants and car engines, but researchers have yet to understand the inner workings of combustion. Physicists at the University of Arkansas have created an optical probe that combustion scientists can use to measure many different aspects of combustion’s components simultaneously.

Rajendra Gupta, professor of physics, will present his findings at the International Conference on Photoacoustic and Photothermal Phenomena at the University of Toronto in Canada.

"If you could understand combustion, you could presumably create engines that are more efficient and less polluting," Gupta said.

Even when methane, the simplest of carbon fuels, burns, it produces small quantities of molecular species—radicals that play an important role in combustion chemistry—before the reactants end up as carbon dioxide and water. These highly reactive species range in concentration from parts per thousand to parts per million.

Researchers have developed theoretical models that describe these species, and have measured them experimentally. However, the currently used measurement techniques have limitations: They produce relative measurements of molecular concentrations, not absolute concentrations. And they only can measure one parameter at a time.

Gupta’s technique will allow researchers to do multi-parameter measurements, including flow velocity, temperature and absolute concentrations for multiple molecular species.

Measuring the components and temperatures in combustion has proved challenging, because physical probes would change the properties of a given flame.

Gupta and his postdoctoral assistant Yunjing Li have used photothermal deflection to create changes in combustion temperature with a tunable laser and then detect the change with another laser beam. They have used this technique to measure the concentration of a species within a methane flame, its temperature and its flow velocity.

The researchers shoot a tunable laser beam into the flame. The beam is tuned to the frequency of the molecule the researchers wish to measure, so it only excites those molecules when it hits the flame. The researchers use another laser beam to detect the excited molecules. Gupta and Li concentrated first on OH, the hydroxyl radical, produced during combustion.

"If I detect a signal, I know I’ve detected hydroxyl," Gupta said.

However, detection often proves difficult; the signal can get lost in "noise" that emanates from the detector and the lasers themselves. To combat this noise, the researchers take measurements over a 50-second interval—500 pulses at 10 pulses per second—and integrate the signal; random noise drops out over time, but the molecular signal remains.

Fifty seconds is a long time in combustion.

"In a flame, things are changing very fast," Gupta said. He and his team are continuing attempts to increase the signal-to-noise ratio and therefore decrease the time needed for detection.

"Ideally, we would like to have a measurement in a single pulse," he said.

This work is supported by the Army Research Office.

# # #

 

Contacts

Rajendra Gupta, professor, physics, Fulbright College, (479) 575-5933, rgupta@uark.edu,

Melissa Blouin, science and research communications manager, (479) 575-5555, blouin@uark.edu

Headlines

Four Students Named Goldwater Scholars; Two Earn Udall Honorable Mentions

Four U of A students have received the prestigious Goldwater Scholarship, an award for top students in mathematics, science, and engineering.

Cross-Campus Collaboration Culminates in New Outdoor Geological Installation

Grand opening event to celebrate the new GeoLab installation at the U of A’s Gearhart Hall courtyard is set for May 3. The installation will be open to the public year-round.

First Students to Use Online Degree to Hone Nursing Leadership, Elevate Patient Care

Hanna Baxendale and Wendi Kimbrell will begin coursework in the Doctor of Nursing Practice-Executive Master of Business Administration program offered by the Eleanor Mann School of Nursing and Walton College.

Join the Office for Sustainability on a Final Cruise to Campus

Cruise to Campus Wednesdays have fostered a gathering space for individuals interested in biking to campus. Drop by the Old Main Lawn from 7:30-10 a.m. Wednesday for coffee, something to eat and conversation.

Fay Jones School Student Ambassador Program Gives Voice to Design Students

The student ambassador program at the Fay Jones School of Architecture and Design is built to connect top design students with their school, its alumni, its future students and others inside and outside the school.

News Daily