University of Arkansas Researchers Identify Transformation in Low-Temperature Water

Feng Wang, University of Arkansas
Photo by Russell Cothren

Feng Wang, University of Arkansas

FAYETTEVILLE, Ark. – Researchers at the University of Arkansas have identified that water, when chilled to a very low temperature, transforms into a new form of liquid.

Through a simulation performed in “supercooled” water, a research team led by chemist Feng “Seymour” Wang, confirmed a “liquid-liquid” phase transition at 207 Kelvins, or 87 degrees below zero on the Fahrenheit scale.

The properties of supercooled water are important for understanding basic processes during cryoprotection, which is the preservation of tissue or cells by liquid nitrogen so they can be thawed without damage, said Wang, an associate professor in the department of chemistry and biochemistry in the J. William Fulbright College of Arts and Sciences.

“On a microsecond time scale, the water did not actually form ice but it transformed into a new form of liquid,” Wang said. “The study provides strong supporting evidence of the liquid-liquid phase transition and predicted a temperature of minimum density if water can be cooled well below its normal freezing temperature. Our study shows water will expand at a very low temperature even without forming ice.” 

The findings were published online July 8 in the journal Proceedings of the National Academy of Sciences. Wang wrote the article, “Liquid–liquid transition in supercooled water suggested by microsecond simulations.” Research associates Yaping Li and Jicun Li assisted with the study.

The liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. Direct experimental verification of such a phase transition had not been accomplished, and theoretical studies from different simulations contradicted each other, Wang said.

The University of Arkansas research team investigated the liquid–liquid phase transition using a simulation model called Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). While normal water is a high-density liquid, the low-density liquid emerged at lower temperatures, according to the simulation.

The research was supported by a National Science Foundation Faculty Early Career Development Award and by a startup grant from the U of A. The University of Arkansas High Performance Computing Center provided the main computational resource for the study.

Contacts

Feng Wang, associate professor
chemistry and biochemistry
469-575-5625, fengwang@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Food Scientists Show Rice Malt Has Potential to Play a Bigger Role in Beer

With Arkansas growing about half of the rice in the United States, and shortages of traditional raw materials such as barley, evaluating rice cultivars for use in malted brewing was one goal of U of A researchers.

Electrical Engineering and Computer Science Senior Design Projects Reviewed by Alumni

Students condensed their design work into senior design projects and presented them for department alumni and other industry professionals, gaining insights from peers and faculty members.

An Evening With NWA Soldier Songs and Voices: The Healing Power of Music

Members of the Northwest Arkansas chapter of Soldier Songs and Voices will share their experiences and perform music in the Pryor Center atrium at 6 p.m. on Friday, April 5.

University Not Pursuing Full External Management of Custodial and Grounds Services

Following an evaluation process that provided the U of A with the opportunity to learn more about its current operations compared to the market, the university will maintain its current workforce.

NAHJ UARK: Free Churros and Sodas During J-Days Celebration

 The U of A chapter of the National Association of Hispanic Journalists will offer churros and sodas on the north patio of Kimpel Hall from noon to 2 p.m. Thursday. Stop by and support your local journalist.

News Daily