Earth Organisms Survive Under Martian Conditions

Methanogens contained in these test tubes, which also contained growth nutrients, sand and water, survived when subjected to Martian freeze-thaw cycles at the University of Arkansas.
Courtesy of Rebecca Mickol

Methanogens contained in these test tubes, which also contained growth nutrients, sand and water, survived when subjected to Martian freeze-thaw cycles at the University of Arkansas.

FAYETTEVILLE, Ark. – New research suggests that methanogens — among the simplest and oldest organisms on Earth — could survive on Mars.

Methanogens, microorganisms in the domain Archaea, use hydrogen as their energy source and carbon dioxide as their carbon source, to metabolize and produce methane, also known as natural gas. Methanogens live in swamps and marshes, but can also be found in the gut of cattle, termites and other herbivores as well as in dead and decaying matter.

Methanogens are anaerobic, so they they don’t require require oxygen. They don’t require organic nutrients and are non-photosynthetic, indicating they could exist in sub-surface environments and therefore are ideal candidates for life on Mars.

Rebecca Mickol, a doctoral student in space and planetary sciences at the University of Arkansas, subjected two species of methanogens to Martian conditions: Methanothermobacter wolfeii and Methanobacterium formicicum. Both species survived the Martian freeze-thaw cycles that Mickol replicated in her experiments.

The species were tested for their ability to withstand Martian freeze-thaw cycles that are below the organisms’ ideal growth temperatures: 37 degrees Celsius (98.6 degrees Fahrenheit) for M. formicicum and 55 degrees Celsius (131 degrees Fahrenheit) for M. wolfeii.

“The surface temperature on Mars varies widely, often ranging between minus 90 degrees Celsius and 27 degrees Celsius over one Martian day,” Mickol said. “If any life were to exist on Mars right now, it would at least have to survive that temperature range. The survival of these two methanogen species exposed to long-term freeze/thaw cycles suggests methanogens could potentially inhabit the subsurface of Mars.”

Mickol conducted the study with Timothy Kral, professor of biological sciences in the Arkansas Center for Space and Planetary Sciences and lead scientist on the project. She is presenting her work at the 2014 General Meeting of the American Society for Microbiology, being held May 17-20 in Boston.

The two species were selected because one is a hyperthermophile, meaning it thrives under extremely hot temperatures, and the other is a thermophile, which thrives under warm temperatures.

“The low temperature on Mars inhibited their growth, but they survived,” Mickol said. “Once they got back to a warm temperature, they were able to grow and metabolize again. I wanted to see if these cold temperatures would kill them, or if they were able to survive and adapt.”

Since the 1990s, Kral has been studying methanogens and examining their ability to survive on Mars. In 2004, scientists discovered methane in the Martian atmosphere, and immediately the question of the source became an important one.

“When they made that discovery, we were really excited because you ask the question ‘What’s the source of that methane?’” Kral said. “One possibility would be methanogens.”

Mickol is currently interning at the Kennedy Space Center in Florida. The NASA Exobiology Program funded her research.

The Arkansas Center for Space and Planetary Sciences, founded in 2000, is an interdisciplinary research institute at the University of Arkansas with 25 graduate students and nearly $3 million in awarded grants.

The University of Arkansas is the flagship institution of the University of Arkansas System and the premier research institution in the state. The Carnegie Foundation for the Advancement of Teaching categorizes the University of Arkansas in its highest research classification, a level that only 2 percent of American colleges and universities share.

Contacts

Timothy Kral, professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-6338, tkral@uark.edu

Rebecca Mickol, doctoral student
Arkansas Center for Space and Planetary Sciences
585-233-0306, rmickol@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Headlines

Engineering Students Select Degree Programs During Decision Week

The College of Engineering recently held a reimagined "Decision Week," including two sessions at which 664 first-year engineering students selected their intended discipline among 10 possible degree sequences.

'Student Success & Global Futures With WLLC' Features Roundtable and Information Sessions

Undergraduates learned from students who had previously studied world languages, played a Passport game to win prizes and learned specific language programs, study abroad and extracurricular activities.

U of A Human Resources Leaders Featured at 2024 HRD Summit

Michelle Hargis Wolfe, chief people officer, and Ashley Ingram, director of talent development, presented breakout sessions during the HRD Summit, held March 9 inside the Graduate Education Building.

Visit With Contracts & Strategic Sourcing at Making Your Day Work Carnival March 28

Connect with university employees who work in the department of contracts and strategic sourcing. Visit the Making Your Day Work Carnival on March 28 in the Arkansas Union Ballroom and Connections Lounge.

Funding Available for Research in Cell and Tissue Metabolism

A pilot project will provide funding for research on campus that measures an aspect of metabolism or elucidates the role of metabolism within a biomedical application. Apply by April 15.

News Daily