Discovery by U of A Physicists Could Lead to New Fiber-Optic Devices

Raymond Walter
Photo by University Relations

Raymond Walter

FAYETTEVILLE, Ark. – New computational physics research at the University of Arkansas shows that applying electrical fields and changing temperature could lead to new devices for use in fiber-optic communications. 

The discovery could lead to the use of electrical vortices in ferroelectric materials for optical applications, said Raymond Walter, a doctoral student in physics and mathematics at the U of A who led the study.

“Electrical vortices are circulating patterns of electrical polarization, and can be found in some nanostructures,” Walter said. “They cause the light passing through these nanostructures to rotate, in the case that these systems also possess a spontaneous polarization. Our system is controlled using electrical fields and is at the nanoscale. This is valuable, then, for extremely small-scale fiber optics. 

“By applying both direct current and alternating current electric fields to the ferroelectric material, we found that the amount of optical rotation could be enhanced. Remarkably, this rotation is maximized near room temperature,” he said.

The U of A research team published its findings in the journal Advanced Electronic Materials, in a paper titled “Electrical Control of Chiral Phases in Electrotoroidic Nanocomposites.” The paper was part of a special issue dedicated to topological structures in ferroic materials.

Contributing to the study were Sergei Prokorenko and Yousra Nahas, both postdoctoral research associates in the Department of Physics; Zhigang Gui, a U of A physics graduate who is now a postdoctoral research associate at the University of Delaware; and Laurent Bellaiche, Distinguished Professor of physics at the U of A who directed the research.

All simulations were conducted using resources at the Arkansas High Performance Computing Center.

Walter is a National Science Foundation Graduate Research Fellow and a U of A Distinguished Doctoral Fellow in physics and mathematics. The Defense Advanced Research Projects Agency, which commissions advanced research for the U.S. Department of Defense, and U.S. Army Research Office also supported the research. 

Contacts

Laurent Bellaiche, Distinguished Professor
Department of Physics
479-575-6425, laurent@uark.edu

Chris Branam, research communications writer/editor
University Relations
479-575-4737, cwbranam@uark.edu

Raymond Walter, NSF Graduate Research Fellow
Department of Physics
479-575-2506, rwalter@uark.edu

Headlines

PetSmart CEO J.K. Symancyk to Speak at Walton College Commencement

J.K. Symancyk is an alumnus of the Sam M. Walton College of Business and serves on the Dean’s Executive Advisory Board.

Faulkner Center, Arkansas PBS Partner to Screen Documentary 'Gospel'

The Faulkner Performing Arts Center will host a screening of Gospel, a documentary exploring the origin of Black spirituality through sermon and song, in partnership with Arkansas PBS at 7:30 p.m. Thursday, May 2.

UAPD Officers Mills and Edwards Honored With New Roles

Veterans of the U of A Police Department, Matt Mills has been promoted to assistant chief, and Crandall Edwards has been promoted to administrative captain.

Community Design Center's Greenway Urbanism Project Wins LIV Hospitality Design Award

"Greenway Urbanism" is one of six urban strategies proposed under the Framework Plan for Cherokee Village, a project that received funding through an Our Town grant from the National Endowment for the Arts.

Spring Bike Drive Refurbishes Old Bikes for New Students

All donated bikes will be given to Pedal It Forward, a local nonprofit that will refurbish your bike and return it to the U of A campus to be gifted to a student in need. Hundreds of students have already benefited.

News Daily