A WRINKLE IN SPACE MAY GROUND LIGHTWEIGHT MIRRORS

FAYETTEVILLE, Ark. - Inflatable structures are ideal for many space applications, but very small wrinkles may make enormous mirrors impractical., says a University of Arkansas researcher. Bob Reynolds, assistant professor of mechanical engineering, has determined that wrinkles make the polymer membranes currently used for space-based inflatable structures, such as reflectors or communications antennae, unsuitable for use as mirrors.

Reynolds worked with graduate students Timothy Ferguson and Joel Funkhouser. He will present their findings on Wednesday, April 18, at the American Institute of Aeronautics and Astronautics Annual Structures, Structural Dynamics and Materials Conference in Seattle.

Space-based mirrors, such as the Hubble telescope, have provided humans a look at the far reaches of space and even time. But lifting huge mechanical devices into space is both expensive and difficult. As a potential solution to these problems, and a way to position even larger mirrors, some scientists have proposed using inflatable structures that would both increase the size and range of the mirrors and decrease the cost of deployment.

Because inflatable devices are made of membranes, they solve many problems as space structures. They can be folded to a very compact size, which makes lifting them into space less expensive. In addition, they can be used to make devices that are many miles wide.

However, the folding and compressing required to make the device small enough also produces wrinkles in the membrane. If these wrinkles are not removed, the final structure will not have the same dimensions or perform in the same manner as it was designed.

Reynolds conducted a series of experiments to determine if the wrinkles smooth out when the structure is inflated. He tested two thicknesses (13 µm and 76 µm) of a polyimide film membrane commonly used in inflatable space structures. Several methods were used to produce small wrinkles in the fabric and either moderate or high wrinkle density.

"We only looked at small wrinkles with random orientation," said. Reynolds. "Large, global creases were intentionally avoided, since their behavior is likely to be somewhat different."

Reynolds subjected the samples to tensile loading like that produced when the structure is inflated and measured the deformation caused by the wrinkles with an optical device that did not touch the surface of the membrane. Although the wrinkle size decreased rapidly during the first two hours, the membranes did not flatten completely. Even after 24 hours, between 50 and 80 percent of the wrinkles remained.

"This shows that it would be nearly impossible to remove all of the wrinkles with inflation pressure alone," Reynolds explained. "Because the collective impact of the wrinkles would be a serious deformation of the size and shape of the overall structure, this is an significant limitation in the use of these films in devices such as mirrors, where precision is critical."

Contacts

Bob Reynolds, assistant professor of mechanical engineering, (479) 575-6671; rrr@engr.uark.edu

Carolyne Garcia, science and research communication officer, (479) 575-5555; cgarcia@uark.edu

 

Headlines

Four Students Named Goldwater Scholars; Two Earn Udall Honorable Mentions

Four U of A students have received the prestigious Goldwater Scholarship, an award for top students in mathematics, science, and engineering.

Cross-Campus Collaboration Culminates in New Outdoor Geological Installation

Grand opening event to celebrate the new GeoLab installation at the U of A’s Gearhart Hall courtyard is set for May 3. The installation will be open to the public year-round.

First Students to Use Online Degree to Hone Nursing Leadership, Elevate Patient Care

Hanna Baxendale and Wendi Kimbrell will begin coursework in the Doctor of Nursing Practice-Executive Master of Business Administration program offered by the Eleanor Mann School of Nursing and Walton College.

Join the Office for Sustainability on a Final Cruise to Campus

Cruise to Campus Wednesdays have fostered a gathering space for individuals interested in biking to campus. Drop by the Old Main Lawn from 7:30-10 a.m. Wednesday for coffee, something to eat and conversation.

Fay Jones School Student Ambassador Program Gives Voice to Design Students

The student ambassador program at the Fay Jones School of Architecture and Design is built to connect top design students with their school, its alumni, its future students and others inside and outside the school.

News Daily